Source code for domid.trainers.pretraining_KMeans
import numpy as np
import torch
from sklearn.cluster import KMeans
[docs]class Pretraining:
[docs] def __init__(self, model, device, loader_tr, loader_val, i_h, i_w, args):
"""
:param model: the model to train
:param device: the device to use
:param loader_tr: the training data loader
:param i_h: image height
:param i_w: image width
"""
self.model = model
self.device = device
self.loader_tr = loader_tr
self.loader_val = loader_val
self.i_h, self.i_w = i_h, i_w
self.args = args
[docs] def pretrain_loss(self, tensor_x, inject_tensor):
"""
:param tensor_x: the input image
:return: the loss
"""
# import pdb; pdb.set_trace()
loss = self.model._cal_pretrain_loss(tensor_x, inject_tensor)
return loss
[docs] def model_fit(self):
num_img = len(self.loader_tr.dataset)
Z = np.zeros((num_img, self.model.zd_dim))
counter = 0
with torch.no_grad():
for tensor_x, vec_y, vec_d, *other_vars in self.loader_tr:
if len(other_vars) > 0:
inject_tensor, image_id = other_vars
if len(inject_tensor) > 0:
inject_tensor = inject_tensor.to(self.device)
tensor_x, vec_y, vec_d = (
tensor_x.to(self.device),
vec_y.to(self.device),
vec_d.to(self.device),
)
preds, z_mu, z, log_sigma2_c, probs, x_pro = self.model.infer_d_v_2(tensor_x, inject_tensor)
z_ = z.detach().cpu().numpy() # [batch_size, zd_dim]
Z[counter : counter + z.shape[0], :] = z_
kmeans = KMeans(n_clusters=self.args.d_dim, n_init=20)
predictions = kmeans.fit_predict(Z)
self.model.cluster_layer.data = torch.tensor(kmeans.cluster_centers_).to(self.device)
return predictions