Source code for domid.trainers.pretraining_GMM

import numpy as np
import torch
from sklearn.mixture import GaussianMixture


[docs]class Pretraining:
[docs] def __init__(self, model, device, loader_tr, loader_val, i_h, i_w, args): """ :param model: the model to train :param device: the device to use :param loader_tr: the training data loader :param i_h: image height :param i_w: image width """ self.model = model self.device = device self.loader_tr = loader_tr self.loader_val = loader_val self.i_h, self.i_w = i_h, i_w self.args = args
[docs] def pretrain_loss(self, tensor_x, inject_tensor): """ :param tensor_x: the input image :return: the loss """ loss = self.model._cal_pretrain_loss(tensor_x, inject_tensor) return loss
[docs] def GMM_fit(self): """ During pre-training we estimate pi, mu_c, and log_sigma2_c with a GMM at the end of each epoch. After pre-training these initial parameter values are used in the calculation of the ELBO loss, and are further updated with backpropagation like all other neural network weights. """ num_img = len(self.loader_tr.dataset) Z = np.zeros((num_img, self.model.zd_dim)) counter = 0 with torch.no_grad(): for tensor_x, vec_y, vec_d, *other_vars in self.loader_tr: if len(other_vars) > 0: inject_tensor, image_id = other_vars if len(inject_tensor) > 0: inject_tensor = inject_tensor.to(self.device) tensor_x, vec_y, vec_d = ( tensor_x.to(self.device), vec_y.to(self.device), vec_d.to(self.device), ) preds, z_mu, z, *_ = self.model.infer_d_v_2(tensor_x, inject_tensor) z = z.detach().cpu().numpy() # [batch_size, zd_dim] Z[counter : counter + z.shape[0], :] = z counter += z.shape[0] try: gmm = GaussianMixture( n_components=self.model.d_dim, covariance_type="diag", reg_covar=10**-3 ) # , reg_covar=10) out_fit_pred = gmm.fit_predict(Z) # print(out_fit_pred) except Exception as ex: raise RuntimeError("Gaussian mixture model failed:" + str(ex)) # visitor/intruder to deep learning model to change model parameters self.model.log_pi.data = torch.log(torch.from_numpy(gmm.weights_)).to(self.device).float() # name convention: mu_c is the mean for the Gaussian mixture cluster, # but mu alone means mean for decoded pixel self.model.mu_c.data = torch.from_numpy(gmm.means_).to(self.device).float() self.model.log_sigma2_c.data = torch.log(torch.from_numpy(gmm.covariances_)).to(self.device).float()