Source code for domid.compos.nn_net

import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F


[docs]class Net_MNIST(nn.Module):
[docs] def __init__(self, y_dim, img_size): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.flat_size = self.probe(img_size) self.fc1 = nn.Linear(self.flat_size, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, y_dim)
[docs] def probe(self, img_size): x = torch.rand(2, 3, img_size, img_size) x = self.conv_op(x) list_size = list(x.shape[1:]) flat_size = np.prod(list_size) return flat_size
[docs] def conv_op(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) return x
[docs] def forward(self, x): x = self.conv_op(x) x = x.view(-1, self.flat_size) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
[docs]def test_Net_MNIST(): import torch x = torch.rand(2, 3, 28, 28) model = Net_MNIST(2, 28) model(x)