Source code for domid.arg_parser

"""
Command line arguments
"""

import numpy as np
from domainlab import arg_parser


[docs]def mk_parser_main(): """ Args for command line definition """ parser = arg_parser.mk_parser_main() parser.add_argument("--d_dim", type=int, default=7, help="number of domains (or clusters)") parser.add_argument("--pre_tr", type=int, default=25, help="number of pretraining epochs") parser.add_argument("--L", type=int, default=3, help="number of MC runs") parser.add_argument( "--prior", type=str, default="Bern", help="specifies whether binary or continuous-valued input data. Input either 'Bern' for Bernoulli or 'Gaus' for Gaussian prior distribution for the data.", ) parser.add_argument( "--model_method", type=str, default="linear", help="specify 'linear' for a fully-connected or 'cnn' for a convolutional model architecture", ) parser.add_argument( "--inject_var", type=str, default=None, help="name of the injected variable (column) in the csv file" ) parser.add_argument( "--meta_data_csv", type=str, default=None, help="path to the csv file containing the meta data for injection (use if the file is not in the dataset folder or is not named dataset.csv)", ) parser.add_argument( "--dim_inject_y", type=int, default=0, help="dimension to inject to input of the decoder from annotation" ) parser.add_argument( "--digits_from_mnist", nargs="*", type=int, default=None, help="digits that should be included from mnist dataset", ) parser.add_argument("--path_to_results", type=str, default="./", help="path to the results csv file") parser.add_argument("--pre_tr_weight_path", type=str, default=None, help="path to the pre-trained weights") parser.add_argument( "--tr_d_range", nargs="*", default=None, help="range to determine the domains used for training; for example, tr_d_range 0 3 assigns domains 0, 1, 2 to training", ) parser.add_argument( "--graph_method", type=str, default=None, help="graph calculation method can be specified for SDCN" ) parser.add_argument("--feat_extract", type=str, default="vae", help="featue extractor method, either vae or ae") parser.add_argument( "--random_batching", action="store_true", default=False, help="randomization of the samples inside one batch, only used in SDCN", ) parser.add_argument("--subset_step", type=int, default=10, help="subset step for the MNIST dataset") return parser
[docs]def parse_cmd_args(): """ Parse given command line arguments """ parser = mk_parser_main() args = parser.parse_args() if args.tr_d_range is not None: tr_d_range = np.arange(int(args.tr_d_range[0]), int(args.tr_d_range[1]), 1) tr_d_range = [str(i) for i in tr_d_range] setattr(args, "tr_d", list(tr_d_range)) return args