[docs]def mk_parser_main():
"""
Args for command line definition
"""
parser = arg_parser.mk_parser_main()
parser.add_argument("--d_dim", type=int, default=7, help="number of domains (or clusters)")
parser.add_argument("--pre_tr", type=int, default=25, help="number of pretraining epochs")
parser.add_argument("--L", type=int, default=3, help="number of MC runs")
parser.add_argument(
"--prior",
type=str,
default="Bern",
help="specifies whether binary or continuous-valued input data. Input either 'Bern' for Bernoulli or 'Gaus' for Gaussian prior distribution for the data.",
)
parser.add_argument(
"--model_method",
type=str,
default="linear",
help="specify 'linear' for a fully-connected or 'cnn' for a convolutional model architecture",
)
parser.add_argument(
"--inject_var", type=str, default=None, help="name of the injected variable (column) in the csv file"
)
parser.add_argument(
"--meta_data_csv",
type=str,
default=None,
help="path to the csv file containing the meta data for injection (use if the file is not in the dataset folder or is not named dataset.csv)",
)
parser.add_argument(
"--dim_inject_y", type=int, default=0, help="dimension to inject to input of the decoder from annotation"
)
parser.add_argument(
"--digits_from_mnist",
nargs="*",
type=int,
default=None,
help="digits that should be included from mnist dataset",
)
parser.add_argument("--path_to_results", type=str, default="./", help="path to the results csv file")
parser.add_argument("--pre_tr_weight_path", type=str, default=None, help="path to the pre-trained weights")
parser.add_argument(
"--tr_d_range",
nargs="*",
default=None,
help="range to determine the domains used for training; for example, tr_d_range 0 3 assigns domains 0, 1, 2 to training",
)
parser.add_argument(
"--graph_method", type=str, default=None, help="graph calculation method can be specified for SDCN"
)
parser.add_argument("--feat_extract", type=str, default="vae", help="featue extractor method, either vae or ae")
parser.add_argument(
"--random_batching",
action="store_true",
default=False,
help="randomization of the samples inside one batch, only used in SDCN",
)
parser.add_argument("--subset_step", type=int, default=10, help="subset step for the MNIST dataset")
return parser