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Abstract

Ratonale and Objectives We investigated effects of prevalence and case distribution on radiologist di-
agnostic performance as measured by area under the receiver operating characteristic curve (AUC) and
sensitivity-specificity in lab-based reader studies evaluating imaging devices.

Materials and Methods Our retrospective reader studies compared full-field digital mammography
(FFDM) to screen-film mammography (SFM) for women with dense breasts. Mammograms were acquired
from the prospective Digital Mammographic Imaging Screening Trial (DMIST). We performed five reader
studies that differed in terms of cancer prevalence and the distribution of non-cancers. Twenty radiologists
participated in each reader study. Using split-plot study designs, we collected recall decisions and multi-level
scores from the radiologists for calculating sensitivity, specificity, and AUC.

Results Differences in reader-averaged AUCs slightly favored SFM over FFDM (biggest AUC difference:
0.047, SE=0.023 p=0.047), where standard error (SE) accounts for reader and case variability. The differences
were not significant at a level of 0.01 (0.05/5 reader studies). The differences in sensitivities and specificities
were also indeterminate. Prevalence had little effect on AUC (largest difference: 0.02), whereas sensitivity
increased and specificity decreased as prevalence increased.

Conclusion We found that AUC is robust to changes in prevalence, while radiologists were more aggressive
with recall decisions as prevalence increased.

Keywords Image Evaluation, Study Design, MRMC analysis, AUC, Sensitivity, Specificity
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1. Introduction

Lab-based reader studies are often used to evaluate imaging technologies and are typically characterized
by 1) a moderate number of cases that may not represent the true patient population (e.g., higher disease
prevalence because of enrichment); 2) structured and quantitative case reports based on a narrow task that
is often a simplification of the clinical task (e.g., the radiologist only evaluates the images and is blinded to
patient information); and 3) retrospective reads with no impact on patient management. Here we report
on lab-based reader studies in a project we refer to as VIPER, Validation of Imaging Premarket Evaluation
and Regulation. The setting for this validation is the comparison of a new imaging modality to a reference
imaging modality. The data from such studies may be used to support Food and Drug Administration
(FDA) clearance or approval of medical imaging devices and computer aids. VIPER was born from a desire
to validate the use of lab-based studies as an alternative to large prospective clinical trials.

One of the largest prospective clinical imaging trials with data available conducted at the time of VIPER’s
conception (2010) was the Digital Mammographic Imaging Screening Trial (DMIST) (1,2). DMIST was
designed to compare full-field digital mammography (FFDM) to screen-film mammography (SFM), pooling
results from five different FFDM platforms and six different SFM platforms. DMIST was sized to detect an
AUC difference of 0.06 between FFDM and SFM with 5% Type I error and 80% power. This requirement and
the low prevalence of breast cancer in the screening population drove the study to enroll 49,528 women, with
all relevant information obtained for 42,760 subjects. Such a study is too expensive for a single manufacturer
or investigator to afford, so many turn to lab-based reader studies.

For decades psychophysical signal-detection experiments have demonstrated the effects of prevalence on
decision threshold (3,4). Egglin and Feinstein (5) found significant differences in sensitivity, specificity, and
AUC of radiologists diagnosing pulmonary emboli at 20% and 60% prevalence. Gur et al (6,7) compared
radiologists’ performance in diagnosing several different pathologies in several different prevalence conditions
and found no significant differences in AUC but found significant shifts in those radiologists’ ratings (8).
However, Gur et al. (9) did find a significant difference in performance between mammographers interpreting
screening mammograms in the clinic and in a laboratory study with higher prevalence. Evans et al. (10)
demonstrated the effects of cytologists’ decision thresholds as a function of prevalence of cervical cancers.
With different coauthors Evans also showed that radiologists mark more cases as cancer in a highly enriched
setting (50% prevalence) compared to when the same cases were inserted into their normal screening service
workflow (11). The current work builds on this literature.

The purpose of VIPER is to investigate the effects of prevalence and case-distribution on radiologist perfor-
mance detecting cancer as measured by AUC and sensitivity-specificity in lab-based reader studies evaluating
imaging devices. We use a data-collection method that enforces consistency between the clinical (binary)
recall decision and ROC scores, and we compare the sensitivity-specificity operating points measured in
VIPER to those found in the prospective DMIST study. Initial results of this paper were presented at the
SPIE Medical Imaging Conference (12). The patient population in VIPER is limited to women with dense
breasts, which was a DMIST sub-population where FFDM was found to significantly outperform SFM (AUC
for FFDM was 0.78, SFM was 0.68). The main VIPER hypotheses test the differences in AUCs from FFDM
and SFM across five reader studies. The studies differ in terms of their study populations, namely, the
prevalence and the distribution of non-cancer cases.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-
profit sectors.

2. Materials and Methods

VIPER was conducted at the Medical University of South Carolina (IRB 13890) from September 2013 to
August 2015 as a retrospective image evaluation study. The images used in VIPER are from the ACRIN
(American College of Radiology Imaging Network) DMIST trial (1,2) and were acquired from ACRIN. In
addition to images, ACRIN provided Breast Imaging Reporting and Data System (BIRADS) management
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Figure 1: Figure 1: Participant flow diagram. Screening and Challenge sub-studies of different prevalences
are created from the final subgroups based on DMIST screening BIRADS scores by FFDM and SFM. The
last row differs from the one above it due to availability from ACRIN.

scores and cancer determinations (based on pathological verification for cancer and up to 455 days of follow-
up for non-cancer) as per the original DMIST study design. ACRIN removed patient identifiers from all
clinical images and data, in accordance with the primary requirements of HIPAA.

2.1 Subjects=Cases

Eligibility for inclusion in VIPER required that the BIRADS breast density classification documented in
DMIST be 3 or 4 by SFM (13). These are women with heterogeneously and extremely dense breasts,
categories “c” and “d” in the current lexicon (14). The participant flow diagram is given in Figure 1. The
age range of the women in VIPER was 33 to 86 (mean: 54).

2.2 Split-Plot Study Design

Given the available cases, we designed five split-plot reader studies (15). In a split-plot study, readers and
cases are split into groups and each reader group is assigned a case group. Each split-plot group is, in effect,
a fully-crossed study (within that group): a study where every reader reads every case in both modalities. In
other words, every reader in reader-group 1 reads every case in case-group 1, every reader in reader-group 2
reads every case in case-group 2, and so on. Each of the VIPER reader studies had four split-plot groups. A
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split-plot study can be more efficient statistically and more efficient in terms of resources compared to a fully
crossed study (15,16). We describe the reader studies below and provide more details in the Supplementary
Materials (17)

2.3 Five VIPER Study Populations

Prevalence: The VIPER reader studies investigated study populations with different prevalences. Table 1
shows the per reader average number of cancers, non-cancers, and cancer prevalences of the five VIPER reader
studies. The lowest prevalence in the VIPER reader studies was 10.6%. For comparison, the prevalence in
DMIST (and the subpopulation of women with dense breasts) was much lower, 0.8%.

Distribution of non-cancer cases: The VIPER reader studies investigated two kinds of non-cancer study
populations: a ‘screening’ population and a ‘challenge’ population. The non-cancer cases in the screening
populations were heavily weighted with BIRADS 1,2 cases, while the non-cancer cases in the challenge
populations included only BIRADS 0 cases. BIRADS 0 cases were challenging because, while some were
the result of bad image quality, most were thought to be suspicious enough for cancer to request additional
evaluations. Table 2 shows the per-reader distributions of BIRADS patient management scores for women
without cancer. The ratio in DMIST (10.69) was moderately larger than the ratios in VIPER screening
reader studies (5.84 to 8.36).
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Table 1 title: Table of average per-reader cancer prevalence.

VIPER Reader Study Average # of Cancers Average # of Non-Cancers Average Prevalence (%) Total Obs
screeningLowP 18.2 154.4 10.6 6911
screeningMedP 28.6 79.2 26.6 4325
screeningHighP 27.2 32.5 45.6 2390
challengeMedP 28.5 80.9 26.1 4377
challengeHighP 26.9 32.5 45.2 2379

Table 1 footnote: Cancer cases are those that were pathologically verified within 455 days after the initial
study mammogram. The average number of cancers and non-cancers are presented here as the case subgroups
were not all equal. An “observation” is one radiologist’s score for one case. VIPER reader studies only
included women with heterogeneously dense or extremely dense breasts. For reference, pooling over all
DMIST radiologists, DMIST found 165 cancers in 19,897 women with dense breasts (prevalence: 0.8%).
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Table 2 title: Table of per-reader distributions of BIRADS patient management scores for women without
cancer.

VIPER Reader Study BIRADS 1&2 BIRADS 0 ratio
screeningLowP 137.95 16.50 8.36
screeningMedP 70.30 8.95 7.85
screeningHighP 27.75 4.75 5.84
challengeMedP 2.25 78.65 0.03
challengeHighP 2.00 30.55 0.07

Table 2 footnote: Average counts are per reader and based on DMIST SFM and FFDM evaluations. Average
counts are presented as the case subgroups were not all equal. For reference, DMIST SFM screening yielded
39,013 BIRADS 1 & 2 women compared to 3648 BIRADS 0 women (ratio: 10.69).
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2.4 Radiologists=Readers

There were 20 readers in each VIPER sub-study. Readers were allowed to participate in more than one
reader study as long as they were assigned to groups with no overlap in cases across the reader studies.
Ultimately, 43 readers participated across the five reader studies.

All readers were American Board of Radiology certified, MQSA qualified, and had clinically interpreted
at least 50 FFDM images and 50 SFM images as part of their residency or practice. Based on a reader
qualification survey, the median number of years interpreting mammograms post residency was 9 (range: 0
to 30). Additionally, readers tended to read with FFDM more than with SFM in their clinical practice. The
number of cases read by all the VIPER readers in the last two years before the study was as follows:

• Mean: FFDM = 8892, SFM = 450
• Median: FFDM = 8000, SFM = 100
• Minimum: FFDM = 990, SFM = 0
• Maximum: FFDM = 20,000, SFM = 9000

All the readers traveled to a central reading location at least twice to participate in two reading sessions
for each reader study. The minimum washout time between two sessions was 27 days and the median was
49.5. In the first reading session, they read half the cases in FFDM and half in SFM. In the second reading
session, each reader independently read the opposite modalities for each of the cases. The case order was
randomized within a modality and session, and the modality order was assigned in a balanced way.

2.5 Data Collection

Readers were blinded to patient demographics, patient history, the DMIST BIRADS screening scores, the
cancer status, and the other radiologist evaluations. For each of the five VIPER study populations, the
prevalence and distribution of non-cancer cases (Tables 1 and 2) were described to the participating radiol-
ogists, but case counts in specific categories were not provided. Radiologists evaluated the current screening
images only (CC and MLO for both breasts), which is different from DMIST, where priors were available to
radiologists.

2.5.1 SFM Images

The original SFM images submitted to ACRIN for the DMIST study were used in this study. The films were
between 10-12 years old by the time this reader study started. Films were cleaned of any marks in preparing
for the study. Films were presented on the top and bottom rollers of a RadX Mammoscope. Shutters were
available to mask extraneous light around smaller 8x10 mammo film sizes. Magnifying glass and hot lamp
were available at the lightbox.

2.5.2 FFDM Images

The original image processing algorithms applied during DMIST were not available for this study. We
did apply image processing to the images to make them interpretable for this reader study choos-
ing a commercial third party vendor: the algorithm was Adar2D by Real Time Tomography, LLC
(www.realtimetomography.com).

All mammograms were displayed on dual Eizo 5MP grayscale monitors following a default hanging protocol.
Unfortunately, the monitors were not calibrated for this study. Readers were trained to zoom the image
(magnification), pan, adjust brightness and contrast as desired.

2.5.3 Reading Environment
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Reading rooms were all located in interior rooms with no windows. Doors were kept closed to eliminate
extraneous light. Small task lamps were available in the room for those radiologists who wanted them. We
did not measure the ambient light in the room with or without the task lamps on.

2.5.4 Reader Scoring

VIPER scoring was done per case, as in DMIST; there was no lesion localization. VIPER used a two-stage
scoring system to allow radiologists to do their clinical task (recall the patient or not) and then be more
quantitative. In the first stage, the readers were asked, “Would you recall this patient?” In the second stage
of scoring, the readers were asked for a numerical score representing a likelihood or confidence the patient
has cancer. The score is meant to rank patients; it is ordinal in nature and not meant to represent an
actual probability or risk. The second stage yielded a 202-point ordinal score: 101 points for any no-recall
decision and 101 points for any recall decision. The 101-point scale on either side of the threshold provides
the radiologists ample space to be quantitative. By design, the two-stage scoring system yields a point on
the empirical receiver operating characteristic (ROC) curve that exactly matches the sensitivity-specificity
of the binary recall data.

We gave the readers instructions on how to navigate the electronic case report form and on how to provide
the numeric score. These are available in the Supplementary Materials (17). The study administrator
reviewed the instructions face-to-face with each reader before beginning data collection and then supervised
the evaluation of four training cases.

2.6 Statistical Analyses

The primary analyses of VIPER were to compare reader-averaged empirical AUCs from FFDM and SFM for
each reader study. We also compare reader-averaged sensitivities and specificities. Sensitivity and specificity
use the recall decision, whereas AUC uses the 202-point ordinal score. The analyses were per case; there
were no per-breast, lesion, or location analyses.

Each standard error (SE), p-value, and 95% confidence interval is estimated using U-statistic-based multiple-
reader, multiple-case (MRMC) analysis methods, such that the analysis accounts for both reader and case
variability (18,19). An MRMC analysis is expected in situations beyond exploratory studies (20) and in all
ACRIN trials (21).

The p-values that we present are based on the standard inference test in which the null hypothesis assumes
there is no performance difference between FFDM and SFM. The test statistic is the observed difference
divided by the SE of that difference. The test statistic is assumed to follow a t-distribution for which we
approximate the degrees of freedom (15). All the MRMC analyses were processed with version 4.0 of the
iMRMC application developed at the FDA (22).

We sized the VIPER reader studies so that the SE of the differences in AUCs would be less than 0.03
(18,19). This would allow ample precision for testing an effect size of 0.11, the difference between the AUCs
from FFDM and SFM observed in DMIST (1). The power for a significance level of 0.01 (0.05 split evenly
among 5 reader studies) is 0.86. To do the sizing analysis, we used the variance components estimated from
DMIST reader studies (23,24), which were obtained via ACRIN’s data request mechanism. The MRMC
analysis results of these studies, including the variance components used for sizing, can be found in the
Supplementary Materials (17).

We created reader-averaged ROC curves by averaging the reader-specific non-parametric (trapezoidal) ROC
curves along lines perpendicular to the chance line (25). This average is area-preserving; its AUC is equal
to the reader-averaged nonparametric AUCs.
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3. Results

Fig. 2 graphically compares the performance of FFDM to SFM for each VIPER reader study, including
performance point-estimates and MRMC SE’s. Refer to Table 3 for the MRMC analyses of reader-averaged
performance differences: FFDM minus SFM. The FFDM and SFM reader-averaged ROC curves and oper-
ating points from VIPER are close. We are unable to reject any null hypothesis (at p=0.01) that there is
no difference in the AUCs from FFDM and SFM. The SE for all AUC differences is less than 0.026, which
meets the criteria that drove the study sizing.

The DMIST ROC curves and AUCs found in Fig. 2.D are reproduced from Fig. 1.C of the original DMIST
results paper (1). They are based on pooling seven-point malignancy scores from all readers during DMIST
screening, and then fitting a bivariate binormal model (26,27). The pooling mixes scores from different
readers and can bias ROC curves and AUCs downward (28). We also caution that the DMIST estimates of
SE do not account for reader variability due to the pooling across readers.

The DMIST sensitivities and specificities presented in Fig. 2.D are based on dichotomizing screening BIRADS
scores (BIRADS 1,2,3 were negative; BIRADS 0,4,5 were positive). This dichotomization aligns with the
VIPER dichotomization of “Recall” and “Do not recall”. These sensitivities and specificities are reproduced
from Table S2 of the DMIST Supplementary Materials (1).

On an absolute scale, the SFM AUCs in the VIPER screening studies (~0.73) are higher than the SFM
AUC from DMIST (0.68), whereas the FFDM AUCs in the VIPER screening studies (~0.71) are lower than
the FFDM AUC from DMIST (0.78). The uncertainties measured for AUCs in VIPER on these individual
modalities are similar to those reported for DMIST, although the study designs, sample sizes, and variance
estimation methods for the two studies are very different. The performance improvement with FFDM
reported in DMIST for women with dense breasts is not replicated in any of the VIPER reader studies.

10



0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
A. screeningLowP

1−Specificity

S
en

si
tiv

ity

chance line

FFDM
AUC  =  0.70 , SE =  0.03
Sens.  =  0.68 , SE =  0.04
Spec.  =  0.61 , SE =  0.03

SFM
AUC  =  0.73 , SE =  0.03
Sens.  =  0.69 , SE =  0.04
Spec.  =  0.59 , SE =  0.04

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

B. screeningMedP

1−Specificity

S
en

si
tiv

ity

chance line

FFDM
AUC  =  0.72 , SE =  0.02
Sens.  =  0.72 , SE =  0.04
Spec.  =  0.59 , SE =  0.04

SFM
AUC  =  0.73 , SE =  0.02
Sens.  =  0.73 , SE =  0.03
Spec.  =  0.57 , SE =  0.03

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

C. screeningHighP

1−Specificity

S
en

si
tiv

ity

chance line

FFDM
AUC  =  0.71 , SE =  0.02
Sens.  =  0.75 , SE =  0.03
Spec.  =  0.53 , SE =  0.04

SFM
AUC  =  0.74 , SE =  0.02
Sens.  =  0.77 , SE =  0.03
Spec.  =  0.55 , SE =  0.04

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

D. DMIST, Prevalence = 0.8%

1−Specificity

S
en

si
tiv

ity

DMIST dig
AUC  =  0.78 , SE = 0.015
Sens.  =  0.57 , SE = 0.039
Spec.  =  0.91 , SE < 0.010

DMIST sfm
AUC  =  0.68 , SE = 0.015
Sens.  =  0.44 , SE = 0.039
Spec.  =  0.9 , SE < 0.010

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

E. challengeMedP

1−Specificity

S
en

si
tiv

ity

chance line

FFDM
AUC  =  0.65 , SE =  0.02
Sens.  =  0.71 , SE =  0.04
Spec.  =  0.41 , SE =  0.03

SFM
AUC  =  0.68 , SE =  0.02
Sens.  =  0.75 , SE =  0.04
Spec.  =  0.41 , SE =  0.04

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

F. challengeHighP

1−Specificity

S
en

si
tiv

ity

chance line

FFDM
AUC  =  0.63 , SE =  0.03
Sens.  =  0.75 , SE =  0.04
Spec.  =  0.36 , SE =  0.05

SFM
AUC  =  0.68 , SE =  0.02
Sens.  =  0.79 , SE =  0.03
Spec.  =  0.36 , SE =  0.05

Figure 2: Figure 2: Plots of reader-averaged ROC curves and reader-averaged operating points (the ver-
tical and horizontal crossings) for each of the VIPER reader studies. For each plot, we also provide the
corresponding performance values and standard errors. In addition to the VIPER plots, we have added
a reproduction of the related DMIST ROC curves in Plot D (reproduction from Fig. 1.C, “Women with
Heterogeneously Dense” or “Extremely Dense Breasts” on Page 1778 of the DMIST NEMJ paper (1)) and
the DMIST BIRADS sensitivity and specificity.
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Figure 3: Figure 2D: This figure is sent separately from the rest of Figure 2 as it comes from a separate
source. Please crop out everything but the axes and the content inside the axes and align it with the axes
provided for Figure 2D in the main figure.
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Fig. 3 compares performance as a function of prevalence for each combination of modality (FFDM and SFM)
and study population (screening and challenge). In each plot, prevalence does not appear to be impacting
the ROC curves. The DMIST operating point for women with dense breasts is also provided on these plots
for reference.

The reader-specific operating points in Fig. 3 are widely dispersed. Specificity ranges from below 0.1 to
0.8 and sensitivity ranges from 0.4 to 1.0. This data demonstrates reader variability in skill and threshold
on the clinical decision to “recall” and “do not recall” in the VIPER lab-based study conditions. When we
average the operating points over the readers, they trend up and to the right as prevalence is increased in
each sub-plot of Fig. 3. The trend is moderate and needs to be explored in a statistical model aggregating
the results across all the VIPER reader studies. The trend is consistent with the expected behavior of a
decision-maker that is maximizing a risk-benefit relationship between the true and false positives, and the
true and false negatives (18). When we compare the reader-averaged VIPER operating points to those from
DMIST (where prevalence was much lower, 0.8%), it is clear that the VIPER operating points are above
and to the right; readers are more aggressive calling cases positive in VIPER.
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Figure 4: Figure 3: Plots of reader-averaged ROC curves, reader-averaged (1-Spec., Sens.) operating points
(the vertical and horizontal crossings), and reader-specific operating points (denoted by the symbols). Study
populations are restricted to women with dense breasts (Heterogeneously Dense and Extremely Dense).
Reader-averaged ROC curves of different prevalences are very close. Reader-averaged operating points move
up and to the right as prevalence increases.
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Table 3 title: Table of MRMC performance differences for AUC, sensitivity, and specificity.

Table 3 footnote: We are unable to reject any null hypothesis that there is no difference in the AUCs from
FFDM and SFM with a significance level of 0.01 (0.05 split evenly between 5 reader studies). Confidence
intervals are not reduced to account for multiplicity. Individual modality performance results can be found
in Fig. 2.

Note: Table 3 is actually 3 concatenated tables: one for AUC, Sensitivity, and Specificity."
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Reader Study (AUC) Prevalence (%) Number of Observations Difference Standard Error 95% Confidence Interval
screeningLowP 10.6 6911 -0.029 0.024 (-0.078, 0.021)
screeningMedP 26.6 4325 -0.005 0.024 (-0.054, 0.043)
screeningHighP 45.6 2390 -0.025 0.025 (-0.075, 0.024)
challengeMedP 26.1 4377 -0.024 0.018 (-0.06, 0.013)
challengeHighP 45.2 2379 -0.047 0.023 (-0.093, -0.001)
DMIST 0.8 39794 0.110 0.035 (0.04, 0.18)
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Reader Study (Sensitivity) Prevalence (%) Number of Observations Difference Standard Error 95% Confidence Interval
screeningLowP 10.6 730 -0.013 0.033 (-0.08, 0.055)
screeningMedP 26.6 1148 -0.012 0.033 (-0.081, 0.056)
screeningHighP 45.6 1090 -0.022 0.025 (-0.073, 0.029)
challengeMedP 26.1 1140 -0.040 0.025 (-0.09, 0.011)
challengeHighP 45.2 1077 -0.033 0.029 (-0.093, 0.027)
DMIST 0.8 330 0.131 0.047 (0.034, 0.222)
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Reader Study (Specificity) Prevalence (%) Number of Observations Difference Standard Error 95% Confidence Interval
screeningLowP 10.6 6181 -0.016 0.015 (-0.013, 0.045)
screeningMedP 26.6 3177 -0.022 0.022 (-0.023, 0.067)
screeningHighP 45.6 1300 0.017 0.031 (-0.081, 0.047)
challengeMedP 26.1 3237 0.000 0.017 (-0.035, 0.035)
challengeHighP 45.2 1302 0.000 0.030 (-0.061, 0.06)
DMIST 0.8 39464 0.004 0.003 (-0.001, 0.01)
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4. Discussion

VIPER found consistent AUC comparisons of FFDM and SFM across different case distributions and preva-
lence. We also found that AUC appears robust to changes in prevalence, whereas sensitivity and specificity
appear to depend on prevalence. This is consistent with the literature mentioned in the Introduction (3–10).

However, VIPER did not find a statistically significant difference in performance between FFDM and SFM
for women with dense breasts. This conflicts with the statistically significant difference found in the DMIST
prospective clinical trial. We attribute this conflicting result to the different statistical analyses and the
different image processing. The VIPER studies also found very different results for sensitivity and specificity
compared to DMIST. Clearly the behavior of the radiologists is different in these lab-based studies compared
to the (very low prevalence) prospective trial. Specifically, the radiologists’ sensitivity and specificity in
VIPER reflect an increased level of aggressiveness in recalling patients compared to DMIST (See Fig. 3).
Compared to what has been documented before, this is a more dramatic difference on a clinically relevant
task across five studies and a very large prospective trial.

To our knowledge no clinical studies other than Pisano et al. have published AUC results comparing FFDM
to SFM on women with dense breasts. Kerlikowske et al. 2011 (29) found sensitivity to be similar for women
with heterogeneously dense breasts (FFDM: 82%, SFM: 79%, 1069 cancers) and borderline significantly
higher for FFDM for women with extremely dense breasts (FFDM: 84%, SFM: 68%, 163 cancers). At the
same time, specificity was significantly lower for FFDM (FFDM: 87%, SFM: 90%, 240,756 non-cancers).
Similarly, Del Turco et al. 2007 (30) found a higher cancer detection rate for FFDM compared to SFM
(FFDM: 1.05%, SFM: 0.53%) that was accompanied by a higher recall rate (FFDM: 4.85%, SFM: 2.69%) for
women with a breast density larger than 75%. It is not known if these differences are related to differences in
AUCs; the differences could be due to a difference in device performance or a change in decision threshold.
In VIPER, we were able to elicit ROC scores on a 202-point scale that sampled all of ROC space without
gaps, eliminating ambiguity that comes from comparing operating points. Please see the individual reader
ROC curves in the Supplementary Materials (17).

The VIPER and DMIST study designs were quite different. Most of the differences were the effects under
investigation; the differences were by design. VIPER was retrospective, not prospective. There was no patient
information used during the image interpretation (including prior images), and the image interpretation did
not affect patient management. Without patient management, radiologists may be less vigilant. Regarding
cases, the patient distribution was out of balance in terms of subpopulations (we only included women
with dense breasts), prevalence (we enriched with cancer cases), and case mix (we investigated challenging
populations in addition to a screening population). These differences were clear at the beginning of the
study to the designers as well as the participants and, except for the focus on the subpopulation of women
with dense breasts, the differences were not expected to favor one modality over the other.

VIPER utilized a split-plot study design, which can make efficient use of cases, each reader’s time, and the
total number of observations of a study (15,16). Each case is read by multiple readers, reducing the noise
from a single observation. Each case is not read by all readers, avoiding the diminishing returns from adding
too many reads. Ultimately, the split-plot study design allowed us to efficiently utilize the limited cancer
cases available to us and to conduct five split-plot studies for the cost of two fully-crossed studies without
sacrificing statistical precision, even in the low-prevalence reader study.

At the time of the design of the DMIST study, there were no validated and readily available MRMC analysis
methods for the DMIST data, methods that accounted for reader and case variability in study designs that
were not fully crossed. Consequently, the DMIST study pooled the results over readers; pooling effectively
ignores reader variability and can bias ROC curves and AUC downward. There are now methods that can
perform MRMC analyses of alternate study designs (15,19,31,32), and some of those methods were used for
this work. Consequently, caution should be taken when comparing the pooled analyses from DMIST to the
MRMC analyses here.

The most critical limitation of VIPER is that the image processing and display were not the same as was
done in DMIST. The DMIST study had staff, including manufacturers’ engineers, dedicated to optimizing
display, providing calibration and quality control. The original image processing algorithms applied during
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DMIST were not available for this study. VIPER only had access to the images in the raw format, and they
were all processed in the same way, regardless of image characteristics or vendor. Furthermore, the monitors
were not calibrated.

In closing, we found that AUC differences in lab-based reader studies were robust to changes in the study
population (prevalence and the distribution of non-cancer cases), and the split-plot study design was effective
at reducing the number of observations needed in total and per reader. In comparing to DMIST, we feel that
it was important to have multiple readers evaluate the rare cancer cases, reducing the impact that one reader
can have on the study results. As such, we caution investigators to design their studies so that each reader
evaluates an adequate number of positive and negative cases. It should be possible to calculate each reader’s
AUC performance, and statistical analyses should account for reader and case variability. Following others,
we think a useful rule of thumb is to have at least 20 positive and 20 negative cases per reader (15). While
lab-based reader studies can be designed with these minimums in mind, prospective studies might require
special methods, like a feedback loop to send rare diseased cases to other readers (only possible in very
large studies). Regardless, we also recommend that the workload be balanced across readers for lab-based
and prospective studies; each reader should evaluate a similar number of cases. When readers read different
caseloads, the results depend on how the interpretations of different readers are combined (the weights) and
there is more reader variability in the results (31).

The VIPER data, analysis scripts, and Supplementary Materials are available online (17).
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Table Captions

Table 1 title: Table of average per-reader cancer prevalence.

Table 1 footnote: Cancer cases are those that were pathologically verified within 455 days after the initial
study mammogram. The average number of cancers and non-cancers are presented here as the case subgroups
were not all equal. An “observation” is one radiologist’s score for one case. VIPER reader studies only
included women with heterogeneously dense or extremely dense breasts. For reference, pooling over all
DMIST radiologists, DMIST found 165 cancers in 19,897 women with dense breasts (prevalence: 0.8%).

Table 2 title: Table of per-reader distributions of BIRADS patient management scores for women without
cancer.

Table 2 footnote: Average counts are per reader and based on DMIST SFM and FFDM evaluations. Average
counts are presented as the case subgroups were not all equal. For reference, DMIST SFM screening yielded
39,013 BIRADS 1 & 2 women compared to 3648 BIRADS 0 women (ratio: 10.69).

Table 3 title: Table of MRMC performance differences for AUC, sensitivity, and specificity.

Table 3 footnote: We are unable to reject any null hypothesis that there is no difference in the AUCs from
FFDM and SFM with a significance level of 0.01 (0.05 split evenly between 5 reader studies). Confidence
intervals are not reduced to account for multiplicity. Individual modality performance results can be found
in Fig. 2.
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Figure Captions

Figure 1: Participant flow diagram. Screening and Challenge sub-studies of different prevalences are created
from the final subgroups based on DMIST screening BIRADS scores by FFDM and SFM. The last row
differs from the one above it due to availability from ACRIN. (Figure width = page.)

Figure 2: Plots of reader-averaged ROC curves and reader-averaged operating points (the vertical and
horizontal crossings) for each of the VIPER reader studies. For each plot, we also provide the corresponding
performance values and standard errors. In addition to the VIPER plots, we have added a reproduction of the
related DMIST ROC curves in Plot D (reproduction from Fig. 1.C, “Women with Heterogeneously Dense”
or “Extremely Dense Breasts” on Page 1778 of the DMIST NEMJ paper (1)) and the DMIST BIRADS
sensitivity and specificity. (Figure width = page.)

Figure 3: Plots of reader-averaged ROC curves, reader-averaged (1-Spec., Sens.) operating points (the
vertical and horizontal crossings), and reader-specific operating points (denoted by the symbols). Study
populations are restricted to women with dense breasts (Heterogeneously Dense and Extremely Dense).
Reader-averaged ROC curves of different prevalences are very close. Reader-averaged operating points move
up and to the right as prevalence increases. (Figure width = page.)
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